Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(2): 25, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280079

RESUMO

Macrophages constitute a major part of tumor microenvironment, and most of existing data demonstrate their ruling role in the development of anti-drug resistance of cancer cell. One of the most powerful protection system is based on heat shock proteins whose synthesis is triggered by activated Heat Shock Factor-1 (HSF1); the inhibition of the HSF1 with CL-43 sensitized A549 lung cancer cells to the anti-cancer effect of etoposide. Notably, analyzing A549 tumor xenografts in mice we observed nest-like pattern of co-localization of A549 cells demonstrating enhanced expression of HSF1 with macrophages, and decided to check whether the above arrangement has a functional value for both cell types. It was found that the incubation of A549 or DLD1 colon cancer cells with either human monocytes or THP1 monocyte-like cells activated HSF1 and increased resistance to etoposide. Importantly, the same effect was shown when primary cultures of colon tumors were incubated with THP1 cells or with human monocytes. To prove that HSF1 is implicated in enhanced resistance caused by monocytic cells, we generated an A549 cell subline devoid of HSF1 which did not respond to incubation with THP1 cells. The pharmacological inhibition of HSF1 with CL-43 also abolished the effect of THP1 cells on primary tumor cells, highlighting a new target of tumor-associated macrophages in a cell proteostasis mechanism.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Resistência a Medicamentos , Etoposídeo/farmacologia , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Fatores de Transcrição/metabolismo , Macrófagos Associados a Tumor/metabolismo
2.
J Exp Clin Cancer Res ; 42(1): 279, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880798

RESUMO

BACKGROUND: Cancer recurrence is regulated by a variety of factors, among which is the material of dying tumor cells; it is suggested that remaining after anti-cancer therapy tumor cells receive a signal from proteins called damage-associated molecular patterns (DAMPs), one of which is heat shock protein 70 (Hsp70). METHODS: Two models of tumor repopulation were employed, based on minimal population of cancer cells and application of conditioned medium (CM). To deplete the CMs of Hsp70 affinity chromatography on ATP-agarose and immunoprecipitation were used. Cell proliferation and the dynamics of cell growth were measured using MTT assay and xCELLigence technology; cell growth markers were estimated using qPCR and with the aid of ELISA for prostaglandin E detection. Immunoprecipitation followed by mass-spectrometry was employed to identify Hsp70-binding proteins and protein-protein interaction assays were developed to reveal the above protein complexes. RESULTS: It was found that CM of dying tumor cells contains tumor regrowth-initiating factors and the removal of one of them, Hsp70, caused a reduction in the relapse-activating capacity. The pull out of Hsp70 alone using ATP-agarose had no effect on repopulation, while the immunodepletion of Hsp70 dramatically reduced its repopulation activity. Using proteomic and immunochemical approaches, we showed that Hsp70 in conditioned medium binds and binds another abundant alarmin, the High Mobility Group B1 (HMGB1) protein; the complex is formed in tumor cells treated with anti-cancer drugs, persists in the cytosol and is further released from dying tumor cells. Recurrence-activating power of Hsp70-HMGB1 complex was proved by the enhanced expression of proliferation markers, Ki67, Aurka and MCM-10 as well as by increase of prostaglandin E production and autophagy activation. Accordingly, dissociating the complex with Hsp70 chaperone inhibitors significantly inhibited the pro-growth effects of the above complex, in both in vitro and in vivo tumor relapse models. CONCLUSIONS: These data led us to suggest that the abundance of the Hsp70-HMGB1 complex in the extracellular matrix may serve as a novel marker of relapse state in cancer patients, while specific targeting of the complex may be promising in the treatment of cancers with a high risk of recurrence.


Assuntos
Proteína HMGB1 , Proteínas de Choque Térmico HSP70 , Humanos , Alarminas , Proteína HMGB1/metabolismo , Meios de Cultivo Condicionados , Proteômica , Doença Crônica , Recidiva , Prostaglandinas
3.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37259455

RESUMO

The amyloid concept of Alzheimer's disease (AD) assumes the ß-amyloid peptide (Aß) as the main pathogenic factor, which injures neural and other brain cells, causing their malfunction and death. Although Aß has been documented to exert its cytotoxic effect in a solitary manner, there is much evidence to claim that its toxicity can be modulated by other proteins. The list of such Aß co-factors or interactors includes tau, APOE, transthyretin, and others. These molecules interact with the peptide and affect the ability of Aß to form oligomers or aggregates, modulating its toxicity. Thus, the list of potential substances able to reduce the harmful effects of the peptide should include ones that can prevent the pathogenic interactions by specifically binding Aß and/or its partners. In the present review, we discuss the data on Aß-based complexes in AD pathogenesis and on the compounds directly targeting Aß or the destructors of its complexes with other polypeptides.

4.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558082

RESUMO

The risk of progression of most sporadic neurodegenerative diseases, including Alzheimer's disease, increases with age. Traditionally, this is associated with a decrease in the efficiency of cell protection systems, in particular, molecular chaperones. Thus, the development of small molecules able to induce the synthesis of chaperones is a promising therapeutic approach to prevent neural diseases associated with ageing. Here, we describe a new compound IA-50, belonging to the class of indolylazines and featured by a low size of topological polar surface area, the property related to substances with potentially high membrane-penetrating activity. We also estimated the absorption, distribution, metabolism and excretion characteristics of IA-50 and found the substance to fit the effective drug criteria. The new compound was found to induce the synthesis and accumulation of Hsp70 in normal and aged neurons and in the hippocampi of young and old mice. The transgenic model of Alzheimer's disease, based on 5xFAD mice, confirmed that the injection of IA-50 prevented the formation of ß-amyloid aggregates, loss of hippocampal neurons and the development of memory impairment. These data indicate that this novel substance may induce the expression of chaperones in neural cells and brain tissues, suggesting its possible application in the therapy of ageing-associated disorders.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Chaperonas Moleculares/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
5.
Pharmaceutics ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36678636

RESUMO

The recovery period after traumatic brain injury (TBI) is often complicated by secondary damage that may last for days or even months after trauma. Two proteins, Hsp70 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were recently described as modulating post-traumatic processes, and in this study, we test them as targets for combination therapy using an inhibitor of GAPDH aggregation (derivative of hydrocortisone RX624) and an inducer of Hsp70 synthesis (the pyrrolylazine derivative PQ-29). The protective effect of the combination on C6 rat glioblastoma cells treated with the cerebrospinal fluid of traumatized animals resulted in an increase in the cell index and in a reduced level of apoptosis. Using a rat weight drop model of TBI, we found that the combined use of both drugs prevented memory impairment and motor deficits, as well as a reduction of neurons and accumulation of GAPDH aggregates in brain tissue. In conclusion, we developed and tested a new approach to the treatment of TBI based on influencing distinct molecular mechanisms in brain cells.

6.
Data Brief ; 39: 107562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34825031

RESUMO

These data are related to our previous paper "Synthesis and approbation of new neuroprotective chemicals of pyrrolyl- and indolylazine classes in a cell model of Alzheimer's disease" (Dutysheva et al., 2021), in which we demonstrate neuroprotective abilities of pyrrolyl- and indolylazines in a cell model of Alzheimer's disease. Using a novel procedure of photocatalysis we have synthesized a group of new compounds. The current article presents nuclear magnetic resonance spectra including heteronuclear single quantum coherence spectra of chemicals synthesized by us. The effect of new compounds have on heat shock proteins genes expression in reprogrammed human neurons are presented. We also presented data that verify neuronal phenotype of reprogrammed cells.

7.
Aging Dis ; 12(5): 1223-1237, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341704

RESUMO

Neuronal cell death at late stages of Alzheimer's disease (AD) causes the release of cytosolic proteins. One of the most abundant such proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), forms stable aggregates with extracellular amyloid-ß (Aß). We detect these aggregates in cerebrospinal fluid (CSF) from AD patients at levels directly proportional to the progressive stages of AD. We found that GAPDH forms a covalent bond with Q15 of Aß that is mediated by transglutaminase (tTG). The Q15A substitution weakens the interaction between Aß and GAPDH and reduces Aß-GAPDH cytotoxicity. Lentivirus-driven GAPDH overexpression in two AD animal models increased the level of apoptosis of hippocampal cells, neural degeneration, and cognitive dysfunction. In contrast, in vivo knockdown of GAPDH reversed these pathogenic abnormalities suggesting a pivotal role of GAPDH in Aß-stimulated neurodegeneration. CSF from animals with enhanced GAPDH expression demonstrates increased cytotoxicity in vitro. Furthermore, RX-624, a specific GAPDH small molecular ligand reduced accumulation of Aß aggregates and reversed memory deficit in AD transgenic mice. These findings argue that extracellular GAPDH compromises Aß clearance and accelerates neurodegeneration, and, thus, is a promising pharmacological target for AD.

8.
Eur J Med Chem ; 222: 113577, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34087544

RESUMO

One of the major causes of neurodegeneration in the pathogenesis of Alzheimer's disease is the accumulation of cytotoxic amyloid species within the intercellular compartments of the brain. The efficacy of the anti-proteotoxic mechanism based on the molecular chaperones Hsp70 and Hsp90 in numerous types of neurons is often low, while its pharmacological enhancement has been shown to ameliorate the physiological and cognitive functions of the brain. Suggesting that the chemicals able to induce heat shock protein synthesis and therefore rescue neural cells from cytotoxicity associated with amyloid, we have synthesized a group of pyrrolyl- and indolylazines that cause the accumulation of heat shock proteins, using a novel method of photocatalysis that is employed in green chemistry. The selected compounds were tested in a cell model of Alzheimer's disease and demonstrated a pronounced neuroprotective effect. These substances increased the survival of neurons, blocked the activation of ß-galactosidase, and prevented apoptosis in neurons cultured in the presence of ß-amyloid.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Hidrazinas/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pirróis/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Estrutura Molecular , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546324

RESUMO

Hypoxia, which commonly accompanies tumor growth, depending on its strength may cause the enhancement of tumorigenicity of cancer cells or their death. One of the proteins targeted by hypoxia is glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and we demonstrated here that hypoxia mimicked by treating C6 rat glioblastoma cells with cobalt chloride caused an up-regulation of the enzyme expression, while further elevation of hypoxic stress caused the enzyme aggregation concomitantly with cell death. Reduction or elevation of GAPDH performed with the aid of specific shRNAs resulted in the augmentation of the tumorigenicity of C6 cells or their sensitization to hypoxic stress. Another hypoxia-regulated protein, Hsp70 chaperone, was shown to prevent the aggregation of oxidized GAPDH and to reduce hypoxia-mediated cell death. In order to release the enzyme molecules from the chaperone, we employed its inhibitor, derivative of colchicine. The compound was found to substantially increase aggregation of GAPDH and to sensitize C6 cells to hypoxia both in vitro and in animals bearing tumors with distinct levels of the enzyme expression. In conclusion, blocking the chaperonic activity of Hsp70 and its interaction with GAPDH may become a promising strategy to overcome tumor resistance to multiple environmental stresses and enhance existing therapeutic tools.


Assuntos
Hipóxia Celular , Glioblastoma/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Animais , Linhagem Celular , Cobalto , Glioblastoma/fisiopatologia , Gliceraldeído-3-Fosfato Desidrogenases/química , Células HEK293 , Humanos , Oxirredução , Agregados Proteicos , Ligação Proteica , Ratos
10.
Pharmaceutics ; 12(5)2020 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-32370188

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a glycolytic enzyme whose role in cell metabolism and homeostasis is well defined, while its function in pathologic processes needs further elucidation. Depending on the cell context, GAPDH may bind a number of physiologically important proteins, control their function and correspondingly affect the cell's fate. These interprotein interactions and post-translational modifications of GAPDH mediate its cytotoxic or cytoprotective functions in the manner of a Janus-like molecule. In this review, we discuss the functional features of the enzyme in cellular physiology and its possible involvement in human pathologies. In the last part of the article, we describe drugs that can be employed to modulate this enzyme's function in some pathologic states.

11.
Pharmaceutics ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366047

RESUMO

Traumatic brain injury (TBI) often causes massive brain cell death accompanied by the accumulation of toxic factors in interstitial and cerebrospinal fluids. The persistence of the damaged brain area is not transient and may occur within days and weeks. Chaperone Hsp70 is known for its cytoprotective and antiapoptotic activity, and thus, a therapeutic approach based on chemically induced Hsp70 expression may become a promising approach to lower post-traumatic complications. To simulate the processes of secondary damage, we used an animal model of TBI and a cell model based on the cultivation of target cells in the presence of cerebrospinal fluid (CSF) from injured rats. Here we present a novel low molecular weight substance, PQ-29, which induces the synthesis of Hsp70 and empowers the resistance of rat C6 glioma cells to the cytotoxic effect of rat cerebrospinal fluid taken from rats subjected to TBI. In an animal model of TBI, PQ-29 elevated the Hsp70 level in brain cells and significantly slowed the process of the apoptosis in acceptor cells in response to cerebrospinal fluid action. The compound was also shown to rescue the motor function of traumatized rats, thus proving its potential application in rehabilitation therapy after TBI.

12.
Data Brief ; 20: 899-902, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30225299

RESUMO

These data are related to our paper "GAPDH-targeted therapy - a new approach for secondary damage after traumatic brain injury on rats" (Lazarev et al., In press), in which we explore the role of exogenous GAPDH in traumatic brain injury-induced neuron death, and the therapeutic application of small molecules that bind to the enzyme. The current article demonstrates the induction of apoptosis by exogenous GAPDH and the effectiveness of the hydrocortisone derivative for suppressing the pathogenic action of the enzyme.

13.
Int J Mol Sci ; 19(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149619

RESUMO

The Hsp70 chaperone binds and inhibits proteins implicated in apoptotic signaling including Caspase-3. Induction of apoptosis is an important mechanism of anti-cancer drugs, therefore Hsp70 can act as a protective system in tumor cells against therapeutic agents. In this study we present an assessment of candidate compounds that are able to dissociate the complex of Hsp70 with Caspase-3, and thus sensitize cells to drug-induced apoptosis. Using the PASS program for prediction of biological activity we selected a derivative of benzodioxol (BT44) that is known to affect molecular chaperones and caspases. Drug affinity responsive target stability and microscale thermophoresis assays indicated that BT44 bound to Hsp70 and reduced the chaperone activity. When etoposide was administered, heat shock accompanied with an accumulation of Hsp70 led to an inhibition of etoposide-induced apoptosis. The number of apoptotic cells increased following BT44 administration, and forced Caspase-3 processing. Competitive protein⁻protein interaction and immunoprecipitation assays showed that BT44 caused dissociation of the Hsp70⁻Caspase-3 complex, thus augmenting the anti-tumor activity of etoposide and highlighting the potential role of molecular separators in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Etoposídeo/farmacologia , Proteínas de Choque Térmico HSP70/metabolismo , Neoplasias/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Ligação Proteica
14.
Biochem Biophys Res Commun ; 501(4): 1003-1008, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29777694

RESUMO

Massive neuronal death caused by a neurodegenerative pathology or damage due to ischaemia or traumatic brain injury leads to the appearance of cytosolic proteins in the extracellular space. We found that one of the most abundant cellular polypeptides, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), appearing in the medium of dying cells or body fluids is able to form aggregates that are cytotoxic to adjacent cells. Since we previously showed that the hydrocortisone derivative RX624 can inhibit the ability of GAPDH to transport the enzyme complex with polyglutamine and reduce the cytotoxicity of the complex, we explored the effects of GAPDH on SH-SY5Y neuroblastoma cells. We found that the latter treated with particular forms of GAPDH molecules die with a high efficiency, suggesting that the exogenous enzyme does kill adjacent cells. RX624 prevented the interaction of exogenous GAPDH with the cell membrane and reduced the level of death by more than 10%. We also demonstrated the efficiency of RX624 treatment in a rat model of traumatic brain injury. The chemical blocked the formation of GAPDH aggregates in the brain, inhibited the cytotoxic effects of cerebrospinal fluid and rescued the motor function of injured rats. Importantly, RX624 treatment of rats had a similar effect as the intracranial injection of anti-GAPDH antibodies.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/terapia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Terapia de Alvo Molecular , Animais , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/fisiopatologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Modelos Animais de Doenças , Humanos , Atividade Motora , Coelhos , Ratos Wistar
15.
Exp Neurol ; 306: 199-208, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704482

RESUMO

Molecular chaperone HSP70 (HSPA1A) has therapeutic potential in conformational neurological diseases. Here we evaluate the neuroprotective function of the chaperone in a rat model of Parkinson's disease (PD). We show that the knock-down of HSP70 (HSPA1A) in dopaminergic neurons of the Substantia nigra causes an almost 2-fold increase in neuronal death and multiple motor disturbances in animals. Conversely, pharmacological activation of HSF1 transcription factor and enhanced expression of inducible HSP70 with the echinochrome derivative, U-133, reverses the process of neurodegeneration, as evidenced by а increase in the number of tyrosine hydroxylase-containing neurons, and prevents the motor disturbances that are typical of the clinical stage of the disease. The neuroprotective effect caused by the elevation of HSP70 in nigral neurons is due to the ability of the chaperone to prevent α-synuclein aggregation and microglia activation. Our findings support the therapeutic relevance of HSP70 induction for the prevention and/or deceleration of PD-like neurodegeneration.


Assuntos
Antiparkinsonianos/uso terapêutico , Cetirizina/uso terapêutico , Fatores de Transcrição de Choque Térmico/agonistas , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Animais , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/genética , Masculino , Microglia/efeitos dos fármacos , Degeneração Neural/genética , Doença de Parkinson/psicologia , Desempenho Psicomotor , Ratos , Ratos Wistar
16.
Cell Death Dis ; 9(2): 41, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348557

RESUMO

Hsp70 chaperone controls proteostasis and anti-stress responses in rapidly renewing cancer cells, making it an important target for therapeutic compounds. To date several Hsp70 inhibitors are presented with remarkable anticancer activity, however their clinical application is limited by the high toxicity towards normal cells. This study aimed to develop assays to search for the substances that reduce the chaperone activity of Hsp70 and diminish its protective function in cancer cells. On our mind the resulting compounds alone should be safe and function in combination with drugs widely employed in oncology. We constructed systems for the analysis of substrate-binding and refolding activity of Hsp70 and to validate the assays screened the substances representing most diverse groups of chemicals of InterBioScreen library. One of the inhibitors was AEAC, an N-amino-ethylamino derivative of colchicine, which toxicity was two-orders lower than that of parent compound. In contrast to colchicine, AEAC inhibited substrate-binding and refolding functions of Hsp70 chaperones. The results of a drug affinity responsive target stability assay, microscale thermophoresis and molecular docking show that AEAC binds Hsp70 with nanomolar affinity. AEAC was found to penetrate C6 rat glioblastoma and B16 mouse melanoma cells and reduce there the function of the Hsp70-mediated refolding system. Although the cytotoxic and growth inhibitory activities of AEAC were minimal, the compound was shown to increase the antitumor efficiency of doxorubicin in tumor cells of both types. When the tumors were grown in animals, AEAC administration in combination with doxorubicin exerted maximal therapeutic effect prolonging animal survival by 10-15 days and reducing tumor growth rate by 60%. To our knowledge, this is the first time that this approach to the high-throughput analysis of chaperone inhibitors has been applied, and it can be useful in the search for drug combinations that are effective in the treatment of highly resistant tumors.


Assuntos
Proteínas de Choque Térmico HSP70/imunologia , Chaperonas Moleculares/imunologia , Simulação de Acoplamento Molecular/métodos , Neoplasias/genética , Linhagem Celular Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
17.
FEBS Lett ; 591(24): 4074-4082, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29139558

RESUMO

Most Hsp70 chaperone inhibitors exert anti-cancer effects; however, their high cytotoxicity proposed the use of peptide fragments of the chaperone as safer modulators of its activity and as complements to customary drugs. One such peptide, ICit-2, was found to inhibit substrate-binding and refolding activities of the chaperone. Using various approaches, we established that ICit-2 binds Hsp70, which may explain its inhibitory action. ICit-2 penetrates A-431 cancer cells and, in combination with doxorubicin (Dox), enhances the cytotoxicity and growth inhibitory effect of the drug. Similarly, using the B16 mouse melanoma model, we found that ICit-2 inhibits the rate of tumor growth by 48% compared to Dox alone, confirming that the peptide can be employed to sensitize resistant tumors to cytostatic medicines.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/farmacologia , Neoplasias/patologia , Fragmentos de Peptídeos/farmacologia , Animais , Sinergismo Farmacológico , Proteínas de Choque Térmico HSP70/fisiologia , Humanos , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/química , Chaperonas Moleculares/farmacologia , Chaperonas Moleculares/fisiologia , Fragmentos de Peptídeos/química , Dobramento de Proteína/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
18.
Front Neurosci ; 11: 277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559794

RESUMO

The vast majority of neurodegenerative pathologies stem from the formation of toxic oligomers and aggregates composed of wrongly folded proteins. These protein complexes can be released from pathogenic cells and enthralled by other cells, causing the formation of new aggregates in a prion-like manner. By this mechanism, migrating complexes can transmit a disorder to distant regions of the brain and promote gradually transmitting degenerative processes. Molecular chaperones can counteract the toxicity of misfolded proteins. In this review, we discuss recent data on the possible cytoprotective functions of chaperones in horizontally transmitting neurological disorders.

19.
Biochem Biophys Res Commun ; 487(3): 723-727, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-28450110

RESUMO

Huntington's disease (HD) has been recently shown to have a horizontally transmitted, prion-like pathology. Thus, the migration of polyglutamine-containing aggregates to acceptor cells is important for the progression of HD. These aggregates contain glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which increases their intracellular transport and their toxicity. Here, we show that RX624, a derivative of hydrocortisone that binds to GAPDH, prevents the formation of aggregates of GAPDH-polyglutamine excreted into the culture medium by PC-12 rat cells expressing mutant huntingtin. RX624 was previously shown to be unable to penetrate cells and, thus, its principal therapeutic action might be the inhibition of polyglutamine-GAPDH complex aggregation in the extracellular matrix. The administration of RX624 to SH-SY5Y acceptor cells that incubated in conditioned medium from PC-12 cells expressing mutant huntingtin caused an approximately 20% increase in survival. This suggests that RX624 might be useful as a drug against polyglutamine pathologies, and that is could be administered exogenously without affecting target cell physiology. This protective effect was validated by the similar effect of an anti-GAPDH specific antibody.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Hidrocortisona/administração & dosagem , Neurônios/metabolismo , Agregados Proteicos/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Líquido Extracelular , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/antagonistas & inibidores , Humanos , Hidrocortisona/análogos & derivados , Hidrocortisona/farmacocinética , Neurônios/citologia , Neurônios/efeitos dos fármacos , Peptídeos
20.
Cell Stress Chaperones ; 21(6): 1055-1064, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27511022

RESUMO

The production of major human heat shock protein Hsp70 (HSPA1A) in a eukaryotic expression system is needed for testing and possible medical applications. In this study, transgenic mice were produced containing wild-type human Hsp70 allele in the vector providing expression in the milk. The results indicated that human Hsp70 was readily expressed in the transgenic animals but did not apparently preserve its intact structure and, hence, it was not possible to purify the protein using conventional isolation techniques. It was suggested that the protein underwent glycosylation in the process of expression, and this quite common modification for proteins expressed in the milk complicated its isolation. To check this possibility, we mutated all presumptive sites of glycosylation and tested the properties of the resulting modified Hsp70 expressed in E. coli. The investigation demonstrated that the modified protein exhibited all beneficial properties of the wild-type Hsp70 and was even superior to the latter for a few parameters. Based on these results, a transgenic mouse strain was obtained which expressed the modified Hsp70 in milk and which was easy to isolate using ATP columns. Therefore, the developed construct can be explored in various bioreactors for reliable manufacture of high quality, uniform, and reproducible human Hsp70 for possible medical applications including neurodegenerative diseases and cancer.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Leite/metabolismo , Animais , Feminino , Proteínas de Choque Térmico HSP70/genética , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Redobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...